19,371 research outputs found

    Two-dimensional convolute integers for optical image data processing and surface fitting

    Get PDF
    An approach toward low-pass, high-pass and band-pass filtering is presented. Convolution coefficients possessing the filtering speed associated with a moving smoothing average without suffering a loss of resolution are discussed. Resolution was retained because the coefficients represented the equivalance of applying high order two-dimensional regression calculations to an image without considering the time-consuming summations associated with the usual normal equations. The smoothing (low-pass) and roughing (high-pass) aspects of the filters are a result of being derived from regression theory. The coefficients are universal integer valves completely described by filter size and surface order, and possess a number of symmetry properties. Double convolution lead to a single set of coefficients with an expanded mask which can yield band-pass filtering and the surface normal. For low order surfaces (0,1), the two-dimensional convolute integers were equivalent to a moving smoothing average

    Investigation of the feasibility of sterile assembly of silver-zinc batteries

    Get PDF
    Electrical performance, bioassays, and packaging concepts evaluated in sterile assembly of silver zinc batterie

    A digital algorithm for spectral deconvolution with noise filtering and peak picking: NOFIPP-DECON

    Get PDF
    Noise-filtering, peak-picking deconvolution software incorporates multiple convoluted convolute integers and multiparameter optimization pattern search. The two theories are described and three aspects of the software package are discussed in detail. Noise-filtering deconvolution was applied to a number of experimental cases ranging from noisy, nondispersive X-ray analyzer data to very noisy photoelectric polarimeter data. Comparisons were made with published infrared data, and a man-machine interactive language has evolved for assisting in very difficult cases. A modified version of the program is being used for routine preprocessing of mass spectral and gas chromatographic data

    Joint claims for JSA: quantitative survey stage 1: potential claimants

    Get PDF

    Improved large-mode area endlessly single-mode photonic crystal fibers

    Get PDF
    We numerically study the possibilities for improved large-mode area endlessly single mode photonic crystal fibers for use in high-power delivery applications. By carefully choosing the optimal hole diameter we find that a triangular core formed by three missing neighboring air holes considerably improves the mode area and loss properties compared to the case with a core formed by one missing air hole. In a realized fiber we demonstrate an enhancement of the mode area by ~30 % without a corresponding increase in the attenuation.Comment: 3 pages including 3 eps-figures. Accepted for Optics Letter

    Avoiding Pandemic Fears in the Subway and Conquering the Platypus.

    Get PDF
    Metagenomics is increasingly used not just to show patterns of microbial diversity but also as a culture-independent method to detect individual organisms of intense clinical, epidemiological, conservation, forensic, or regulatory interest. A widely reported metagenomic study of the New York subway suggested that the pathogens Yersinia pestis and Bacillus anthracis were part of the "normal subway microbiome." In their article in mSystems, Hsu and collaborators (mSystems 1(3):e00018-16, 2016, http://dx.doi.org/10.1128/mSystems.00018-16) showed that microbial communities on transit surfaces in the Boston subway system are maintained from a metapopulation of human skin commensals and environmental generalists and that reanalysis of the New York subway data with appropriate methods did not detect the pathogens. We note that commonly used software pipelines can produce results that lack prima facie validity (e.g., reporting widespread distribution of notorious endemic species such as the platypus or the presence of pathogens) but that appropriate use of inclusion and exclusion sets can avoid this issue

    Fast light, slow light, and phase singularities: a connection to generalized weak values

    Full text link
    We demonstrate that Aharonov-Albert-Vaidman (AAV) weak values have a direct relationship with the response function of a system, and have a much wider range of applicability in both the classical and quantum domains than previously thought. Using this idea, we have built an optical system, based on a birefringent photonic crystal, with an infinite number of weak values. In this system, the propagation speed of a polarized light pulse displays both superluminal and slow light behavior with a sharp transition between the two regimes. We show that this system's response possesses two-dimensional, vortex-antivortex phase singularities. Important consequences for optical signal processing are discussed.Comment: 9 pages, 4 figures, accepted in Physical Review Letters (2003

    Distribution of chirality in the quantum walk: Markov process and entanglement

    Full text link
    The asymptotic behavior of the quantum walk on the line is investigated focusing on the probability distribution of chirality independently of position. The long-time limit of this distribution is shown to exist and to depend on the initial conditions, and it also determines the asymptotic value of the entanglement between the coin and the position. It is shown that for given asymptotic values of both the entanglement and the chirality distribution it is possible to find the corresponding initial conditions within a particular class of spatially extended Gaussian distributions. Moreover it is shown that the entanglement also measures the degree of Markovian randomness of the distribution of chirality.Comment: 5 pages, 3 figures, It was accepted in Physcial Review

    Locating the source of projectile fluid droplets

    Full text link
    The ill-posed projectile problem of finding the source height from spattered droplets of viscous fluid is a longstanding obstacle to accident reconstruction and crime scene analysis. It is widely known how to infer the impact angle of droplets on a surface from the elongation of their impact profiles. However, the lack of velocity information makes finding the height of the origin from the impact position and angle of individual drops not possible. From aggregate statistics of the spatter and basic equations of projectile motion, we introduce a reciprocal correlation plot that is effective when the polar launch angle is concentrated in a narrow range. The vertical coordinate depends on the orientation of the spattered surface, and equals the tangent of the impact angle for a level surface. When the horizontal plot coordinate is twice the reciprocal of the impact distance, we can infer the source height as the slope of the data points in the reciprocal correlation plot. If the distribution of launch angles is not narrow, failure of the method is evident in the lack of linear correlation. We perform a number of experimental trials, as well as numerical calculations and show that the height estimate is insensitive to aerodynamic drag. Besides its possible relevance for crime investigation, reciprocal-plot analysis of spatter may find application to volcanism and other topics and is most immediately applicable for undergraduate science and engineering students in the context of crime-scene analysis.Comment: To appear in the American Journal of Physics (ms 23338). Improved readability and organization in this versio
    • …
    corecore